

Investigating the role of representational competence and spatial ability in learning with chemical representations

Sebastian Nickel – Steffen Brockmüller – Sebastian Habig

Theoretical Framework

- Chemists use representations (e.g., graphs, chemical equations) to understand and depict chemical phenomena (Rau, 2017; Harle & Towns, 2011), to develop content knowledge and for problem-solving processes (Rau, 2017; Kozma et al., 2000).
- "Representation dilemma": students have to learn content they do not understand from representations they may not yet understand, either (Rau, 2018). ⇒ representational competence (table 1) to overcome this dilemma (Kozma & Russell, 2005; Rau, 2018)
- Representations in chemistry are fairly abstract and highly spatial (Rau, 2017). ⇒ students need spatial abilities (Stieff et al. 2018)

Table 1 Synthesis of the lower-level skills from Kozma and Russell (1997, 2005) with the characterization of representations for a better operationalization (Gurung et al. 2022). CL 111 Th

LVI.	Category	Skill: The ability to
S	Interpretation	Identify, analyze, and interpret features and patterns of chemical representations and to use them to describe chemical phenomena.
lower-level skill	Translation	to translate a chemical representation into one with a similar degree of abstraction and explicit information without changing the represented object itself (e.g. to translate a stick-and-ball model into a dash-wedge diagram, without changing the molecule) and to change perspectives.
	Construction	to construct or select a (new) chemical representation for a particular purpose by significantly modifying the degree of abstraction and explicit information (e. g. to generate a skeletal structure from a molecular formula) and to generate representations that are distinct from the original (e. g. to generate the isomers of a given molecule).

Research Gaps and Research Questions

The model provided by Kozma and Russell (1997, 2005) has not been empirically tested and no appropriate instrument is available.

- **RQ**₁ To what extent can the theoretical skills interpretation, translation and *construction* be empirically distinguished?
- Relationship between representational competence, content knowledge and spatial ability has only been partially investigated.
- **RQ**₂ Which is the relationship between *interpretation*, *translation* and construction, content knowledge, and different spatial factors in chemistry?

Study 1 - Chemical Representation Inventory: Translation, Interpretation, Construction (CRI:TIC)

Development of the CRI:TIC

- Adaption and construction of representation-based (symbolic, visual-graphical, and hybrid forms) multiple-choice and semiopened items \Rightarrow assignment to the three skills: κ_{Fleiss} = .87 (3 raters)
- Text-based items to measure content and concept knowledge \Rightarrow reference to the "representational dilemma"

Evaluation of the CRI:TIC (freshmen in different STEM domains, N=185 (n_{q} =130, n_{d} =53), M_{age} =19.31 a, SD_{age} =1.99 a) Rasch analysis with partial credit model and multidimensional Rasch analysis to check the item fit (outfit) and model fit (AICc, saBIC, SRMSR, Q3-Statistics)

Representational competence

- Good item fit after deletion of five items (content issues, too difficult, bad outfit) ► Table 2
 - SRMSR, MADaQ3, and Q3-statistics are comparable for all models
 - saBIC suggest a multi-dimensional model and AICc the one-dimensional model
 - ⇒ Statistical results favor the one-dimensional model, nevertheless it makes sense to distinguish the three skills from theory.

Representational competence (RC) & content knowledge (CK)

- Model comparison suggests to distinguish RC and CK (AICc, saBIC)
- Model fits (SRMSR, Q3-statistics) are comparable
- ⇒ We distinguish RC and CK based on statistical findings and theory.

Study 2 - Interplay Between Representational Competence, Content Knowledge, & Spatial Ability

- CRI:TIC to measure RC (and CK) and eight psychometric instruments to measure different factors of spatial ability
- Correlation analysis to investigate their interplay
- Preliminary finding:
 - 3-D rotation and identifying figures in patterns shows strongest correlations with RC
 - Translation shows less correlations than interpretation/construction
 - CK shows no correlation with spatial ability

► Table 7

Sebastian Nickel FAU Erlangen-Nürnberg **Chemistry Education** Germany sebastian.nickel@fau.de

- ► Table 3
- ► Table 4

- ► Table 5

► Table 6

Study 1 - Chemical Representation Inventory: Translation, Interpretation, Construction (CRI:TIC)

Table 2 Outfit and infit statistics of the Items for the 1-, 2- and 3-dimensional model of RC.

	Outfit		Infit			
Model	range	м	SD	range	м	SD
1-dimensional	0.63 ≤ <i>outfit</i> ≤ 1.39	0.92	0.19	0.80 ≤ <i>infit</i> ≤ 1.16	0.96	0.10
2-dimensional	0.79 ≤ <i>outfit</i> ≤ 1.36	0.99	0.15	0.89 ≤ infit ≤ 1.21	1.00	0.08
3-dimensional	0.80 ≤ <i>outfit</i> ≤ 1.39	1.00	0.16	$0.89 \leq infit \leq 1.19$	1.00	0.08

Table 3

Model fit (SRMR, MADaQ3) and Q3-statistics for the 1-, 2- and 3-dimensional model of RC.

Madal	Мос	del fit		Q3-statistic	
	SRMSR	MADaQ3	range	М	SD
1-dimensional	.067	.070	26 ≤ Q3 ≤ .32	02	.08
2-dimensional	.067	.071	30 ≤ Q3 ≤ .31	02	.09
3-dimensional	.067	.071	29 ≤ Q3 ≤ .31	02	.09

 Table 4
 Model comparison of the 1-, 2- and 3-dimensional models of RC. The p-values represent the significance of ANOVA for comparing the 2- and 3-dimensional with the 1-dimensional model.

Model	LL	n _p	AIC	BIC	AICc	saBIC	p
1-dimensional	-3748	68	7632	7851	7713	7635	
2-dimensional	-3744	70	7627	7853	7716	7631	.014
3-dimensional	-3741	73	7629	7864	7726	7633	.023

Table 5

5 Model fit (SRMR, MADaQ3) and Q3-statistics for the 1-, 2- and 3-dimensional model of RC and CK.

Madal	Мос	lel fit			
	SRMSR	MADaQ3	range	М	SD
1-dimensional (RC + CK)	.076	.072	58 ≤ Q3 ≤ .33	013	.088
2-dimensional (RC / CK)	.074	.070	55 ≤ Q3 ≤ .33	015	.086

Table 6

le 6 Model comparison of the 1-and 2-dimensional models of RC and CK.

Model	LL	n _p	AIC	BIC	AICc	saBIC	р
1-dimensional (RC + CK)	-5308	87	10791	11071	10949	10795	
2-dimensional (RC / CK)	-5288	89	10754	11041	10923	10759	< .001

Study 2 - Interplay Between Representational Competence, Content Knowledge & Spatial Ability

Table 7

Preliminary findings on correlations between the person abilities (lower-level representational skills and content knowledge) and the measured factors of spatial ability with bonferroni correction.

	PSVT:R	BM	CRT	GCT	IPT	MTST	PFT	НРТ
Interpretation	.52***	-	.30*	-	-	-	.32*	.34*
Translation	.45***	-	-	-	-	-	-	.33*
Construction	.43***	-	.37***	-	-	-	.32*	.38*
Content Knowledge	-	-	-	-	-	-	-	-
*** p ≤ .001 ** p ≤ .01 * p ≤ .05	PSVT:R 3-D rotation of figures BM memorize pictures shortly CRT 2-D rotation of figures GCT identify incomplete pictures				IPT MTST PFT HPT	 compare figures quickly find a path through a labyrinth mental manipulation of figures identify figures in complex path 		